Ход с жесткостью это

0 Авто

Счётчик Ге́йгера, счётчик Ге́йгера — Мю́ллера — газоразрядный прибор для автоматического подсчёта числа попавших в него ионизирующих частиц.

Содержание

История [ править | править код ]

Принцип предложен в 1908 году Хансом Гейгером; в 1928 Вальтер Мюллер, работая под руководством Гейгера, реализовал на практике несколько версий прибора, конструктивно отличавшихся в зависимости от типа излучения, которое регистрировал счётчик.

Устройство [ править | править код ]

Представляет собой газонаполненный конденсатор, который пробивается при пролёте ионизирующей частицы через объём газа. Дополнительная электронная схема обеспечивает счётчик питанием (как правило, не менее 300 В ). При необходимости обеспечивает гашение разряда и подсчитывает количество разрядов через счётчик.

Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда).

В бытовых дозиметрах и радиометрах производства СССР и России обычно применяются счётчики с рабочим напряжением 390 В :

  • «СБМ-20» (по размерам — чуть толще карандаша), «СБМ-21» (как сигаретный фильтр, оба со стальным корпусом, пригодный для жёсткого β — и γ -излучений);
  • «СИ-8Б» (со слюдяным окном в корпусе, пригоден для измерения мягкого β -излучения).

Широкое применение счётчика Гейгера — Мюллера объясняется высокой чувствительностью, возможностью регистрировать разного рода излучения, сравнительной простотой и дешевизной установки.

Принцип работы [ править | править код ]

Цилиндрический счётчик Гейгера — Мюллера состоит из металлической трубки или металлизированной изнутри стеклянной трубки и тонкой металлической нити, натянутой по оси цилиндра. Нить служит анодом, трубка — катодом. Трубка заполняется разреженным газом, в большинстве случаев используют благородные газы — аргон и неон. Между катодом и анодом создаётся напряжение от сотен до тысяч вольт в зависимости от геометрических размеров, материала электродов и газовой среды внутри счётчика. В большинстве случаев широко распространённые отечественные счётчики Гейгера, требуют напряжения 400 В .

Работа счётчика основана на ударной ионизации. Гамма-кванты, испускаемые радиоактивным изотопом, попадая на стенки счётчика, выбивают из него электроны. Электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряжённости поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счётчик резко возрастает. Этим счётчик Гейгера отличается от пропорционального счётчика, где напряжённость поля недостаточна для возникновения вторичных лавин, и разряд прекращается после пролёта первичной лавины. При этом на сопротивлении R образуется импульс напряжения, который подаётся в регистрирующее устройство. Чтобы счётчик смог регистрировать следующую попавшую в него частицу, лавинный разряд нужно погасить. Это происходит автоматически. В момент появления импульса тока на сопротивлении R возникает большое падение напряжения, поэтому напряжение между анодом и катодом резко уменьшается — настолько, что разряд прекращается, и счётчик снова готов к работе. Для ускорения гашения могут использоваться специальные схемы, принудительно снижающие напряжение на счётчике, что позволяет также уменьшить анодное сопротивление и увеличить уровень сигнала. Однако чаще в газовую смесь в счётчике добавляют немного галогена (брома или иода) или органического соединения с относительно большой молекулярной массой (обычно какого-либо спирта) — эти молекулы взаимодействуют с положительными ионами, давая в результате ионы с большей массой и меньшей подвижностью. Кроме того, они интенсивно поглощают ультрафиолетовое излучение разряда — эти два фактора приводят к быстрому и самопроизвольному гашению разряда даже с небольшим анодным сопротивлением. Такие счётчики называются самогасящимися. В случае применения в качестве гасящей добавки спирта при каждом импульсе некоторое его количество разрушается, поэтому гасящая добавка расходуется и счётчик имеет определённый (хоть и достаточно большой) ресурс по количеству зарегистрированных частиц. При его исчерпании счётчик начинает «гореть» — начинает самопроизвольно возрастать скорость счёта даже в отсутствии облучения, а затем в счётчике возникает непрерывный разряд. В галогенных счётчиках распавшиеся молекулы галогена вновь соединяются, поэтому их ресурс значительно больше ( 10 10 импульсов и выше).

Счётная характеристика (зависимость скорости счёта от напряжения на счётчике) имеет хорошо выраженное плато, в пределах которого скорость счёта очень слабо зависит от напряжения на счётчике. Протяжённость такого плато достигает для низковольтных счётчиков 80—100 В , а для высоковольтных — нескольких сотен вольт.

Длительность сигнала со счётчика Гейгера сравнительно велика ( ≈10 −4 с ). Именно такое время требуется, чтобы медленные положительные ионы, заполнившие пространство вблизи нити-анода после пролёта частицы и прохождения электронной лавины, ушли к катоду и восстановилась чувствительность детектора.

Важной характеристикой счётчика является его эффективность. Не все γ -фотоны, попавшие на счётчик, дадут вторичные электроны и будут зарегистрированы, так как акты взаимодействия γ -лучей с веществом сравнительно редки, и часть вторичных электронов поглощается в стенках прибора, не достигнув газового объёма.

Эффективность регистрации частиц счётчиком Гейгера различна в зависимости от их природы. Заряженные частицы (например, альфа- и бета-лучи) вызывают разряд в счётчике почти всегда, однако часть их теряется в материале стенок счётчика. Особенно это актуально для альфа-частиц и мягкого бета-излучения. Для их регистрации в счётчике делают тонкое ( 2—7 мкм для регистрации альфа-излучения и 10—15 мкм для мягкого бета-излучения) окно из слюды, алюминиевой или бериллиевой фольги или полимерной плёнки. Эффективность счётчика для рентгеновского и гамма-излучения зависит от толщины стенок счётчика, их материала и энергии излучения. Так как γ -излучение слабо взаимодействует с веществом, то обычно эффективность γ -счётчиков мала и составляет всего 1—2 % . Наибольшей эффективностью обладают счётчики, стенки которых сделаны из материала с большим атомным номером Z , так как при этом увеличивается образование вторичных электронов. Кроме того, стенки счётчика должны быть достаточно толстыми. Толщина стенки счётчика выбирается из условия её равенства длине свободного пробега вторичных электронов в материале стенки. При большой толщине стенки вторичные электроны не пройдут в рабочий объём счётчика, и возникновения импульса тока не произойдёт. Это приводит к характерной зависимости скорости счёта от энергии гамма-кванта (так называемый «ход с жёсткостью») с явно выраженным максимумом, который у большинства счётчиков Гейгера расположен в области мягкого гамма-излучения. При использовании счётчиков Гейгера в дозиметрической аппаратуре «ход с жёсткостью» частично исправляют с помощью дополнительного экрана (например, стального или свинцового), который поглощает мягкое гамма-излучение вблизи максимума чувствительности и вместе с тем несколько повышает эффективность регистрации жёстких гамма-квантов из-за генерации вторичных электронов и комптоновского излучения в материале экрана. В результате этого зависимость скорости счёта от мощности дозы в значительной степени выравнивается. Этот экран часто делают съёмным для возможности раздельного определения бета- и гамма-излучения. Напротив, для регистрации рентгеновского излучения применяют счётчики с тонким окном, наподобие используемого в детекторах для альфа- и мягкого бета-излучения.

Нейтроны напрямую газоразрядными счётчиками не детектируются. Использование в качестве газовой среды гелия-3 или трифторида бора либо введение бора в состав материала стенок позволяет регистрировать нейтроны по заряженным продуктам ядерных реакций.

Помимо низкой и сильно зависящей от энергии эффективности, недостатком счётчика Гейгера — Мюллера является то, что он не даёт возможность идентифицировать частицы и определять их энергию. Эти недостатки отсутствуют в сцинтилляционных счётчиках.

При измерении слабых потоков ионизирующего излучения счётчиком Гейгера необходимо учитывать его собственный фон. Даже в толстой свинцовой защите скорость счёта никогда не становится равной нулю. Одной из причин этой спонтанной активности счётчика является жёсткая компонента космического излучения, проникающая без существенного ослабления даже через десятки сантиметров свинца и состоящая в основном из мюонов. Через каждый квадратный сантиметр у поверхности Земли пролетает в среднем около 1 мюона в минуту, при этом эффективность регистрации их счётчиком Гейгера практически равна 100 %. Другой источник фона — это радиоактивное «загрязнение» материалов самого счётчика. Кроме того, значительный вклад в собственный фон даёт спонтанная эмиссия электронов из катода счётчика.

Примечание [ править | править код ]

Следует отметить, что по историческим причинам сложилось несоответствие между русским и английским вариантами этого и последующих терминов:

Эффективность детектора фотонного излучения зависит от материала, из которого сделан счетчик, толщины стенок и энергии фотонов. Это связано со сложным характером взаимодействия g -излучения с веществом (фотоэффект, комптоновское рассеяние и образование пары, сечения которых зависят не только от энергии g -квантов, но и от атомного номера элемента Z). При изменении энергии g -излучения мощность экспозиционной дозы, измеренная в воздухе, пропорциональна ионизации в полости камеры и зависит от материала стенок камеры.

Ход с жесткостью — зависимость отношения коэффициентов передачи энергии и отношения, определяющего ослабление g -излучения в детекторе.

Соотношение между мощностью поглощенной дозы в воздухе и током в ионизационной камере. Ток насыщения ионизационной камеры не зависит от разности потенциалов между электродами, а пропорционален объему, в котором происходит ионизация, и числу пар ионов, образующихся в единицу времени.

Найдем ток насыщения, соответствующий энергии 1 Дж, поглощенной 1 кг воздуха за 1 с, т. е. мощности единичной поглощенной дозы, 1 Гр/с:

Здесь — число пар ионов, образовавшихся при поглощении энергии 1 Дж; 33,5 эВ — средняя энергия, затрачиваемая на образование одной пары в воздухе; r возд = 1,293 кг/м 3 .

Если объем камеры Vк (м 3 ), мощность поглощенной дозы (Гр/с), то ток насыщения камеры

, А (6.5.1)

, Гр/с. (6.5.2)

Аналогичные расчеты для мощности экспозиционной дозы (Р/с) и камеры объемом Vк (см 3 ) дают

, А (6.5.3)

, Р/с. (6.5.4)

Соотношение между током ФЭУ Ia и мощностью поглощенной дозы в воздухе . Ток на аноде будет определяться числом фотоэлектронов, образующихся на фотокатоде на 1 см 3 сцинтиллятора nеф, и коэффициентом умножения ФЭУ Mфэу:

. (6.5.5)

Здесь h люм и h фк — конверсионная эффективность соответственно сцинтиллятора и фотокатода ФЭУ; (h n )ср — средняя энергия фотонов люминесценции; Епогл — поглощенная энергия частицы.

Энергия, поглощенная в единицу времени в сцинтилляторе массой m, равна

. (6.5.6)

Здесь , где m ez и m z — линейные коэффициенты ослабления и поглощения соответственно, м –1 ; j 0 — интенсивность g -излучения, Дж/(м 2 × с).

Подставляя найденные значения в формулу (6.5.6) и интегрируя по высоте (0, h) цилиндрического сцинтиллятора площадью сечения s, получаем

. (6.5.7)

Подставим выражение (6.5.7) в уравнение (6.5.5):

, (6.5.8)

где m — масса сцинтиллятора, кг; — мощность дозы в воздухе, Гр/с; 1,6 × 10 –19 (А) — ток, создаваемый одним электроном в секунду; m emz — массовый коэффициент поглощения g -квантов в люминофоре, м 2 /кг; m z — линейный коэффициент ослабления g -квантов по высоте h, м –1 ; — массовый коэффициент поглощения g -квантов в воздухе, м 2 /кг; Ia — ток, А.

Обозначим ; , тогда

. (6.5.9)

При измерении мощности дозы, поглощенной в воздухе существующими сцинтилляторами, необходимо учитывать ход с жесткостью. Как видно из уравнения (6.5.9), отношение тока ФЭУ к поглощенной дозе зависит от соотношения массовых коэффициентов поглощения
g -квантов люминофором и воздухом, а также от линейного коэффициента ослабления g -квантов в люминофоре.

При тонком ( m zh œ 1) и воздухоэквивалентном сцинтилляторах ход с жесткостью отсутствует.

С увеличением толщины сцинтиллятора ход с жесткостью увеличивается, особенно в области малых энергий. На рис. 6.5.1 показаны графики хода с жесткостью для кристаллов NaI(Tl) (Zэфф = 50) и антрацена (Zэфф = 5,8). В области малых энергий вероятность фотопоглощения меньше, чем комптоновского рассеяния, поэтому кривые 1 и 2 проходят ниже уровня . Максимум хода с жесткостью 2 объясняется влиянием фотопоглощения. В то же время у антрацена фотопоглощение сказывается значительно слабее. Более того, при Е g > 0,15 МэВ вероятности фотопоглощения в воздухе и антрацене сближаются по величине, чем и объясняется отсутствие хода с жесткостью у антрацена в этой области.

Рис. 6.5.1 Ход с жесткостью кристаллов NaI(Tl) (1) и антрацена (2) [18]

Рис. 6.5.2 Ход с жесткостью кристаллов антрацена (1), хлорантрацена (2) и их смеси (3) (57 % антрацена и 43 % хлорантрацена) толщиной 0,3 мм [18]

Для исправления хода с жесткостью комбинируют два вещества так, чтобы компенсировалось их взаимное влияние в области фотопоглощения. Например, комбинируют органические и неорганические сцинтилляторы, т. е. растворяют люминесцирующее органическое вещество в основном растворителе (n-терфенил в бензоле) и смешивают два мелкокристаллических органических сцинтиллятора с различным значением Zэфф. На рис. 6.5.2 показан ход с жесткостью антрацена (1), хлорантрацена (2) и их смеси (3), состоящей из 57 % антрацена и 43 % хлорантрацена, толщиной 0,3 мм. Для этой смеси почти полностью компенсирован ход с жесткостью.

Давно не проблема купить прибор под условным названием «бытовой дозиметр» (были б деньги — в этом смысле, Фукусима радиофобам и радиофилам (TM) подгадила), но думаю, что этот прибор было бы интересно сделать своими руками.

Сердцем нашего прибора будет счетчик Гейгера. Мы знаем, конечно, что у этого детектора есть куча недостатков и вообще «прибор должен быть сцинтилляционным», но сцинтилляционный радиометр существенно сложнее и у меня под него задуман следующий пост. Тем более, у счетчика Гейгера-Мюллера есть и ряд неоспоримых достоинств.

Детектор

Итак, счетчик Гейгера-Мюллера. (рис.1) Простейшее устройство, состоящее из двух электродов, помещенных в газовую среду при низком давлении — катод, имеющий большую площадь, и анод в виде более-менее тонкой проволоки, создающий локальное поле большой напряженности. в котором развивается процесс размножения ионов, за счет которого единственная ионная пара может вызвать мощную лавину ионизации и зажигание самостоятельного разряда.


Рис. 1. Счетчик Гейгера-Мюллера. 1 — анод, 2 — катод, 3 — баллон, 4 — вывод катода, 5, 6 — пружины, натягивающие нить катода.

По сути счетчик работает, как тиратрон с холодным катодом, только разряд в нем зажигается от ионизации, вызванной не импульсом с сетки, а пролетевшей через газ заряженной частицей. После того, как разряд загорелся, его нужно погасить либо снятием с анода напряжения, либо… Либо он погаснет сам. Но для этого в газовую среду счетчика надо ввести что-то, что под действием разряда перейдет в форму, которая сделает газ непрозрачным для ультрафиолетового излучения и из-за этого исчезнет один из факторов поддержания самостоятельного разряда — фотоэлектронная эмиссия. Таких добавок две: спирт и галогены (хлор, бром и йод). Первый в разряде разлагается, превращаясь, грубо говоря, в сажу, и потом обратно в спирт не превращается, и через несколько десятков тысяч импульсов кончится и счетчику конец. А галогены становятся из молекулярных атомарными, причем процесс обратим. Они тоже кончаются — из-за того, что атомарные галогены с легкостью реагируют со всем попало, включая стенки счетчика, но чаще они успевают рекомбинировать друг с другом, поэтому галогенные счетчики гораздо более долговечны, выдерживая миллиарды импульсов. Нас интересуют в первую очередь галогенные счетчики, потому что:

а) они долговечнее,
б) они работают при 400-500 В, а не при полутора тысячах, как спиртовые,
в) они просто наиболее распространены.
В таблице 1 я привел несколько распространенных счетчиков Гейгера и их основные параметры.

Таблица 1.
Основные параметры некоторых счетчиков Гейгера-Мюллера.


Примечания: 1 — чувствительность к альфа-излучению не регламентирована; 2 — мелкосерийный счетчик, данные по нему скудны.

Чувствительность

Выбирая счетчик Гейгера для нашего дозиметра, нужно в первую очередь смотреть на его чувствительность. Ведь вряд ли вы хотите прибор, который что-то покажет только там, где пару часов назад взорвалась «Кузькина мать». А таких счетчиков, между тем, предостаточно, и за их почти полной бесполезностью для обывателя, они очень дешево стоят. Это всевозможные СИ-3БГ, СИ-13Г и прочие «счетчики судного дня», стоящие в армейских дозиметрах для работы на верхнем пределе измерений. Чем счетчик чувствительнее, тем больше импульсов в секунду он при одном и том же уровне радиации даст. Классический счетчик СБМ-20 (он же более ранних выпусков носил название СТС-5), который традиционно ставили во все перестроечно-постчернобыльские «трещалки», при естественном фоне в 12 мкР/ч дает около 18 импульсов в минуту. От этой цифры удобно плясать, считая чувствительность счетчика в «СБМ-20».

Что нам дает чувствительность счетчика? Точность и скорость реакции. Дело в том, что частицы радиоактивных излучений прилетают к нам не по расписанию, а как придется, да и счетчик какую-то из них пропустит, а от какой-то сработает (от фотонов гамма-излучения — примерно от одного из нескольких сотен). Так что импульсы от счетчика Гейгера (да и от любого счетного детектора радиации) идут в абсолютно случайные моменты времени с непредсказуемыми интервалами между ними. И посчитав количество импульсов в одну минуту, другую, третью — мы получим различные значения. И среднеквадратичное отклонение этих значений, то есть погрешность определения скорости счета, будет пропорционален квадратному корню из числа зарегистрированных импульсов. Чем больше будет импульсов, тем меньше будет относительная (в процентах от измеряемой величины) погрешность их счета:

.
Когда у нас детектор — упомянутый «эталонный» СБМ-20, а время счета — 40 секунд (так делали в простых бытовых дозиметрах, непосредственно показывая число сосчитанных импульсов в качестве уровня мощности дозы в мкР/ч), на естественном фоне количество импульсов —

10 штук. А это значит, что среднеквадратическое отклонение — около трех. А погрешность при 95% доверительной вероятности — вдвое больше, то есть 6 импульсов. Таким образом, мы имеем грустную картинку: показания дозиметра 10 мкР/ч означают, что мощность дозы составляет где-то от 4 до 16 мкР/ч. А об обнаружении аномалии мы сможем говорить только когда дозиметр покажет отклонение в три сигмы, то есть больше 20 мкР/ч…

Чтобы точность увеличить, можно увеличить время счета. Если мы сделаем его три минуты, то есть в четыре раза больше, мы учетверим и число импульсов, а значит, удвоим точность. Но тогда мы потеряем реакцию прибора на короткие всплески излучения, например, на прошедшего мимо вас «вашего сиятельства» после сцинтиграфии или радиойодтерапии или наоборот, когда вы проходите на радиобазаре мимо часов с СПД. А взяв вчетверо более чувствительный детектор (4 параллельно соединенных СБМ-20, один СБМ-19, СБТ-10 или СИ-8Б) и оставив то же время измерения, мы и точность повысим, и скорость реакции сохраним.

Альфа, бета, гамма и конструкция счетчиков

Альфа-излучение задерживается бумажкой. Бета-излучение можно экранировать листом оргстекла. А от жесткого гамма-излучения нужно строить стену из свинцовых кирпичей. Это знают, пожалуй, все. И все это имеет прямое отношение к счетчикам Гейгера: чтобы он почувствовал излучение, нужно, чтобы оно, как минимум, проникло внутрь. А еще оно должно не пролететь навылет, как нейтрино сквозь Землю.

Счетчик типа СБМ-20 (и его старший брат СБМ-19 и младшие СБМ-10 и СБМ-21) имеют металлический корпус, в котором нет никаких специальных входных окон. Из этого вытекает, что ни о какой чувствительности к альфа-излучению речи не идет. Бета-лучи он чувствует достаточно неплохо, но только если они достаточно жесткие, чтобы проникнуть внутрь. Это где-то от 300 кэВ. А вот гамма-излучение он чувствует, начиная с пары десятков кэВ.

А счетчики СБТ-10 и СИ-8Б (а также новомодные и малодоступные из-за ломовых цен Бета-1,2 и 5) вместо сплошной стальной оболочки имеют обширное окно из тонкой слюды. Через это окно способны проникнуть бета-частицы с энергией свыше 100-150 кэВ, что позволяет увидеть загрязнение углеродом-14, которое абсолютно невидимо для стальных счетчиков. Также окно из слюды позволяет счетчику чувствовать альфа-частицы. Правда, в отношении последних надо смотреть на толщину слюды конкретных счетчиков. Так, СБТ-10 с его толстой слюдой его практически не видит, а у Беты-1 и 2 слюда тоньше, что дает эффективность регистрации альфа-частиц плутония-239 около 20%. СИ-8Б — где-то посередине между ними.

А вот теперь что касается пролета насквозь. Дело в том, что альфа- и бета-частицы счетчик Гейгера регистрирует практически все, что смогли проникнуть внутрь. А вот с гамма-квантами все печально. Чтобы гамма-квант вызвал импульс в счетчике, он должен выбить из его стенки электрон. Этот электрон должен преодолеть толщу металла от точки, где произошло взаимодействие, до внутренней поверхности, и поэтому «рабочий объем» детектора, где происходит его взаимодействие с фотонами гамма-излучения — это тончайший, в несколько микрон, слой металла. Отсюда ясно, что эффективность счетчика для гамма-излучения очень мала — в сто и более раз меньше, чем для бета-излучения.

Питание

Для работы счетчик Гейгера требует высоковольтного питания. Типичные галогенные приборы советского-российского производства требуют напряжения около 400 В, многие западные счетчики рассчитаны на 500 или 900 В. Некоторые счетчики требуют напряжения до полутора киловольт — это старые счетчики со спиртовым гашением типа МС и ВС, счетчики рентгеновского излучения для рентгеноструктурного анализа, нейтронные. Нас они не будут сильно интересовать. Питание на счетчик подается через балластное сопротивление в несколько мегаом — оно ограничивает импульс тока и снижает напряжение на счетчике после прохождения импульса, облегчая гашение. Величина этого сопротивления приводится в справочных данных на конкретный прибор — его слишком малая величина сокращает жизнь детектора, а слишком большая — увеличивает мертвое время. Обычно его можно взять около 5 МОм.

При увеличении напряжения от нуля счетчик Гейгера сначала работает, как обыкновенная ионизационная камера, а затем, как пропорциональный счетчик: каждая из пар ионов, которые образовались при пролете частицы, порождает небольшую ионов, увеличивая ионный ток в сотни и тысячи раз. При этом на нагрузочном сопротивлении в цепи счетчика уже можно обнаружить очень слабые, измеряемые милливольтами, импульсы. С ростом напряжения лавины становятся все больше, и в какой-то момент самые сильные из них начинают поддерживать сами себя, зажигая самостоятельный разряд. В этот момент вместо слабых, милливольтовых импульсов от лавин, проходящих через межэлектродное пространство и исчезающих на электродах, появляются гигантские, амплитудой в несколько десятков вольт! И их частота с ростом напряжения быстро растет, пока вспышку разряда не начнет вызывать каждая лавина Очевидно, что при дальнейшем росте напряжения скорость счета должна перестать расти. Так оно и происходит: на зависимости чувствительности от напряжения наблюдается плато.

Все же рост напряжения не оставляет скорость счета неизменной: разряд может возникнуть и просто так, от спонтанной эмиссии. И с ростом напряжения вероятность такого разряда только увеличивается. Поэтому плато получается наклонным, а начиная с некоторого напряжения скорость счета начинает быстро расти, а затем разряд переходит в непрерывный. В таком режиме, понятное дело, счетчик не только не выполняет своей функции, но и быстро выходит из строя.


Рис. 2. Зависимость скорости счета счетчика Гейгера от напряжения питания.

Наличие плато существенно облегчает питание счетчика Гейгера — ему не требуются высокостабильные источники высокого напряжения, какие требуются для сцинтилляционных счетчиков. Длина этого плато для низковольтных счетчиков — 80-100 В. Во многих советских бытовых дозиметрах кооперативного происхождения и практически во всех любительских конструкциях того времени питание счетчика было сделано от преобразователя напряжения на основе блокинг-генератора без всякого намека на стабилизацию. Расчет был таким: при свежей батарейке напряжение на аноде счетчика соответствовало верхней границе плато, так что нижней границы плато высокое напряжение достигало уже при изрядно разряженной батарейке.

Фон и мертвое время

Любой детектор любого излучения всегда имеет некоторый темновой сигнал, регистрируемый, когда на детектор не падает никакое излучение. Счетчик Гейгера-Мюллера — не исключение. Одним из источников темнового фона является упоминавшаяся выше спонтанная эмиссия. Вторым — радиоактивность самого счетчика, что особенно актуально для счетчиков со слюдяным окном, так как природная слюда неизбежно содержит примеси урана и тория. И если последняя практически не зависит ни от чего и является константой для данного экземпляра детектора, то фон от спонтанной эмиссии зависит от величины высокого напряжения, температуры, «возраста» счетчика. Из-за этого становится плохой идеей питать нестабилизированным напряжением счетчик, которым мы будем пользоваться в основном при измерениях низких уровней радиации: собственный фон счетчика от напряжения питания зависит весьма существенно.

Скорость счета от собственного фона достигает у счетчиков Гейгера уровня, соответствующего 3-10 мкР/ч, то есть составляет заметную долю скорости счета при нормальной радиационной обстановке. Особенно велик фон у слюдяных датчиков — СБТ-10, СИ-8Б, «Бета». Так что его обязательно нужно вычитать из результатов измерения. Но для этого его нужно знать. Справочник тут не поможет: там приведены лишь максимальные значения. Чтобы собственный фон измерить, нужен свинцовый «домик» толщиной не менее 5 см, при этом внутреннюю поверхность нужно покрыть листами меди толщиной 2-3 мм и 5 мм оргстеклом. Дело в том, что «домик» будет находиться под обстрелом космических лучей, которые делают сам домик источником рентгеновского излучения, главным образом в характеристических линиях свинца. И если сделать защиту только из свинца, это флюоресцентное «свечение» и «увидит» счетчик — вместо полной «темноты». А оргстекло нужно от выбиваемых той же космикой из свинца и меди электронов, энергия которых тоже достаточна для обнаружения счетчиком Гейгера.

При измерении фона следует учитывать, что свинцовый «домик» не оказывает никакого препятствия для космических мюонов. Их поток составляет

0,015 . Например, через счетчик СБМ-20 эффективной площадью

8 пройдет 0,12 или 7,2 . Из-за большой энергии эффективность регистрации космических мюонов практически любым счетчиком Гейгера можно принимать за 100%, и эту величину следует вычесть из темнового фона.

Если собственный фон — источник погрешностей при низких уровнях, то мертвое время сказывается при больших уровнях радиации. Сущность явления состоит в том, что сразу после импульса емкость счетчика еще не зарядилась до первоначального напряжения через нагрузочное сопротивление. Кроме того, в счетчике только погас разряд — но гасящая присадка еще не успела вернуться в первоначальное состояние. Поэтому у счетчика на 150-200 мкс возникает состояние, когда он оказывается нечувствителен к следующей частице, после чего он постепенно восстанавливает чувствительность. (рис. 3)


Рис. 3. Мертвое время счетчика Гейгера

Поправка на мертвое время находится по формуле:

где m и n, соответственно, измеренная и скорректированная скорости счета, а — мертвое время.

При очень больших уровнях радиации у многих счетчиков Гейгера (тут еще зависит и от остальной схемы) наступает неприятный и опасный эффект: постоянная ионизация мешает формироваться отдельным импульсам. Счетчик начинает непрерывно «гореть» постоянным разрядом и скорость счета резко падает до очень малой величины. Вместо того, чтобы зашкалить, дозиметр показывает какие-то умеренно-повышенные, а то и почти нормальные цифры. А тем временем вокруг светят десятки и сотни рентген в час и надо бы бежать, но вы успокоены показаниями дозиметра. Именно поэтому в армейских дозиметрах почти всегда есть помимо основного чувствительного — счетчик «судного дня», очень малочувствительный, но зато способный переварить тысячи Р/ч.

От скорости счета к дозе. Ход с жесткостью и прочие нехорошие вещи

Вообще говоря, счетчик Гейгера не измеряет мощность дозы. Мы получаем лишь скорость счета — сколько импульсов в минуту или секунду выдал счетчик. К дозе — энергии, поглощенной в одном килограмме человеческого тела (или еще чего-либо) это имеет весьма отдаленное отношение. В первую очередь — в связи с принципом действия: счетчику Гейгера абсолютно плевать на природу частицы и ее энергию. Импульсы от фотонов любой энергии, бета-частиц, мюонов, позитронов, протонов — будут одинаковыми. А вот эффективность регистрации — разная.

Как уже я говорил, бета-излучение счетчик Гейгера регистрирует с эффективностью в десятки процентов. А гамма-гамма-кванты — только доли процента. И все это напоминает складывание метров с килограммами, да еще и с произвольно взятыми коэффициентами. Вдобавок, чувствительность счетчика к гамма-излучению неодинакова при разных энергиях (рис.4). Дозовая чувствительность к излучению разных энергий может отличаться почти на порядок. Природа этого явления понятна: гамма-излучение низкой энергии имеет гораздо больший шанс поглотиться тонким слоем вещества, поэтому чем энергия ниже, тем выше эффективность (пока не начнет сказываться поглощение в стенках счетчика). В области же высоких энергий наоборот: с ростом энергии эффективность регистрации растет, что является среди детекторов ионизирующего излучения достаточно необычным явлением.


Рис. 4. Энергетическая зависимость дозовой чувствительности счетчика Гейгера-Мюллера (слева) и результат ее компенсации с помощью фильтра.

К счастью, при высоких энергиях (выше 0,5-1 МэВ) эффективность счетчика Гейгера к гамма-излучению почти пропорциональна энергии. А значит, энергетическая зависимость дозовой чувствительности там невелика. А горб при малых энергиях легко убрать с помощью фильтра из свинца толщиной около 0,5 мм. Толщина фильтра подбирается таким образом, чтобы при энергии, соответствующей максимальной чувствительности детектора (это 50-100 кэВ в зависимости от толщины входного окна детектора) кратность поглощения составляла бы величину этого пика. Чем энергия больше, тем меньше поглощения в свинце, и при 500-1000 кэВ, где чувствительность детектора выравнивается сама, оно уже практически незаметно.

Более точной коррекции можно добиться, используя многослойный фильтр из разных металлов, который нужно подбирать к конкретному счетчику.

Такой фильтр сокращает «ход с жесткостью» до величины в 15-20% во всем диапазоне 50-3000 кэВ и превращает показометр (ну ладно, поисковый радиометр-индикатор) в дозиметр.

Такой фильтр обычно делают съемным, поскольку он делает датчик нечувствительным к альфа- и бета-излучению.

Логотип сайта Авто Подруга

Увы, комментариев пока нет. Станьте первым!

Добавить комментарий

Данные не разглашаются

Нажимая кнопку «Отправить сообщение», я соглашаюсь с обработкой персональных данных

Adblock
detector